

D4.4 – Feasibility and accuracy of the highspeed DoD inkjet printing of known ceramic inks onto SOC interconnects

PROJECT INFORMATION

GRANT AGREEMENT NUMBER	826323	
PROJECT FULL TITLE	Low Cost Interconnects with highly improved	
	Contact Strength for SOC Applications	
PROJECT ACRONYM	LOWCOST-IC	
FUNDING SCHEME	FCH-JU2	
START DATE OF THE PROJECT	1/1-2019	
DURATION	36 months	
CALL IDENTIFIER	H2020-JTI-FCH-2018-1	
PROJECT WEBSITE	www.lowcost-ic.eu	

DELIVERABLE INFORMATION

WP NO.	4
WP LEADER	DTU
CONTRIBUTING PARTNERS	TI
NATURE	Public
AUTHORS	Dino Boccaccini (TI)
CONTRIBUTORS	Henrik Lund Frandsen (DTU)
CONTRACTUAL DEADLINE	30/09/2019
DELIVERY DATE TO EC	30/09/2019

DISSEMINATION LEVEL

PU	Public	х
PP	Restricted to other programme participants (incl. Commission Services)	
RE	Restricted to a group specified by the consortium (incl. Commission Services)	
CO	Confidential, only for the members of the consortium (incl. Commission Services)	

1 First trials of ink deposition with a piezoelectric ink jet printer on SOLIDpower interconnects

1.1 Rheology of the inks employed

Table 1 Inks data

Sample	Viscosity (cP):	Surface tension (dyne):	Density (g/L)	
Commercial ink for inkjet	10-11	30-32 dyne	1200	
application				
Note:	Solvent based inks were used for testing			

1.2 Process parameters of the printer

Table 2 Process parameters of the printer

Velocity drop (m/s):	Drop volume (pL):	Resolution (dpi)	Line speed (m/min)	Discharge in single pass for square meter (g/m^2)	Number of passes	Total weight (g/m ²)
7	165	360x360	10	50	2	100

1.3 Thermal treatment post-inkjet deposition

After the ink jet deposition, the samples were dried at 100°C for 20 minutes

1.4 Results

b)

Figure 1a): Ink deposited on the crests. Two passages X50, b) picture at x20

Figures 2 a) and b): Thicknesses of the deposed layer in two different reginos for two passages at X250

Figure 3: picture of the deposed layer. Two passages X250

Conclusions

There are no apparently any critical issues to apply the inks, bearing in mind that the step in patterns must be a multiple of 1 mm with the current used inkjet printer.

Two passages in the printer permit to do approximately 35 microns thick layers.

Acknowledgment

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 826323. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.